• Personalized Medicine

    image Doctors have long known that people sometimes differ in how a drug works in their bodies. What accounts for these differences? The field of pharmacogenetics (or pharmacogenomics) explores this question by focusing how genes affect the way people respond to medications. The idea is to create very specific medications that will be effective in people with a certain gene while sparing use—including the potential side effects of use—in people without the gene. The ultimate goal is to create “designer drugs” matched to unique genetic profiles.

    Treating Cancer

    The genes of many cancers differ from noncancer genes in the same individual. These cancer genes are often very active, and this activity potentially provides scientists with targets for effective cancer treatment. For example, the cancer drug trastuzumab is prescribed to treat metastatic breast cancer in which the tumors contain an overactive HER-2 gene. It is estimated that nearly 30% of all women with breast cancer have tumors with this type of abnormal gene activity. If doctors can determine excessive HER-2 activity in a tumor, trastuzumab can be used to block the effects of the HER-2 gene and improve cancer survival. While trastuzumab can be lifesaving in some, it also has serious potential side effects which must be balanced against its benefits.
    Likewise, the drug imatinib is used in people with chronic myeloid leukemia whose cancers have a gene that makes an abnormal leukemia-causing protein, BCR-ABL. This medication may also be effective in treating other types of cancer that affect the blood cells, as well as gastrointestinal stromal tumors.

    Identifying Natural Variations

    Even though we all have the same overall number of genes, what contributes to our individuality, including our susceptibility to disease and reactions to medications are the unique variations within our own set of genes. These are naturally occurring differences, known as single nucleotide polymorphisms (SNPs). Among the more than three billion pairs of DNA building blocks in the human genome, a very small fraction of these pairs vary from person to person. Yet these genetic variations are at the heart of pharmacogenetics research.
    By digging deeper into our molecular blueprints, medication will become more tailored to groups or individuals with certain genetic flags. Scientists hope that understanding these genetic variations will increasingly explain individual differences in the way that drugs are absorbed and metabolized, their side effects, and their overall effectiveness. Some of this understanding has begun to find its way into clinical applications.
    For example, AmpliChip CYP450 is a test that measures variations in two genes that play a role in the metabolism of some commonly prescribed drugs. The test’s manufacturer claims AmpliChip can reduce the chances of unwanted drug reactions if doctors use it to guide their prescriptions of drugs known to be metabolized through one of the two measured genes. Test results may also allow dosages to be adjusted for those persons whose genes lead them to metabolize drugs unusually rapidly or unusually slowly.

    Earlier Diagnosis, Tailored Treatment

    Advances in molecular analysis offer the promise of improvements not only in individualized treatment, but in early disease diagnosis, as well. If researchers know the genes or gene products to look for, diseases may be found earlier, potentially even before symptoms are apparent or the disease process really gets going—an obvious advance in the case of monitoring for recurrent cancers, for example. The Oncotype DX Breast Cancer Assay is a panel test designed to detect the presence of 21 cancer-related genes. The National Cancer Institute is currently doing a large study involving over 7,000 women with early stage breast cancer. The researchers are studying whether certain genes that are linked to cancer recurrence can be used as a basis to select individualized treatment plans for the best outcomes.

    Future Prospects

    Personalized medicine may be able to:
    • Identify people at risk for disease
    • Provide earlier intervention—Researchers hope that quicker treatment may translate into more effective treatment and better outcomes.
    • Develop better drugs more quickly—As scientists understand the genetic variations and molecular pathways involved in a disease, pharmaceutical companies hope to develop highly targeted drugs more quickly than is the norm today.
    Before personalized medicine can be widely applied, however, much more research is needed in the field of pharmacogenetics.


    National Institute of General Medical Sciences (NIGMS) http://www.nigms.nih.gov

    Personalized Medicine Coalition http://www.personalizedmedicinecoalition.org


    Health Canada http://www.hc-sc.gc.ca

    Public Health Agency of Canada http://www.phac-aspc.gc.ca


    AmpliChip CYP 450 test. Hoffman-Roche Ltd website. Available at: http://www.roche.com/products/product-details.htm?type=product&id=17. Accessed March 16, 2015.

    Cohen MH, Moses ML, et al. Gleevec for the treatment of chronic myelogenous leukemia: US. Food and Drug Administration regulatory mechanisms, accelerated approval, and orphan drug status. Oncologist. 2002;7:390-392.

    HER2 inhibitors for breast cancer. EBSCO DynaMed website. Available at: http://www.ebscohost.com/dynamed. Updated January 12, 2015. Accessed March 16, 2015.

    Imantinib. EBSCO DynaMed website. Available at: http://www.ebscohost.com/dynamed. Updated March 12, 2015. Accessed March 16, 2015.

    Personalized medicine will fit you like a glove. US Food and Drug Administration website. Available at: http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm317362.htm. Updated July 31, 2014. Accessed March 16, 2015.

    Targeted cancer therapy. American Cancer Society website. Available at: http://www.cancer.org/acs/groups/cid/documents/webcontent/003024-pdf.pdf. Accessed March 16, 2015.

    The science behind the human genome project. Human Genome Project Information website. Available at: http://www.ornl.gov/sci/techresources/Human%5FGenome/project/info.shtml. Accessed March 16, 2015.

    The TAILORx breast cancer trial. National Cancer Institute website. Available at: http://www.cancer.gov/clinicaltrials/noteworthy-trials/tailorx. Updated October 22, 2010. Accessed March 16, 2015.

    Trastuzumab. EBSCO DynaMed website. Available at: http://www.ebscohost.com/dynamed. Updated January 12, 2015. Accessed March 16, 2015.

    Revision Information

  • LiveWell personal health survey

    How healthy are you really? Find out – free.Learn more

    It's time to stop guessing. If you want to make some changes but just aren't sure how, the free personal health survey from LiveWell is a great place to start.

  • HeartSHAPE Spotlight

    At risk for a heart attack? Learn more

    Fight heart disease and prevent heart attacks. HeartSHAPE® is a painless, non-invasive test that checks pictures of your heart for early-stage coronary disease.

  • Calories and Energy Needs

    Calorie NeedsLearn more

    How many calories do you need to eat each day to maintain your weight and fuel your physical activity? Enter a few of your stats into this calculator to find out.

  • Ideal Body Weight

    Ideal Body WeightLearn more

    Using body mass index as a reference, this calculator determines your ideal body weight range. All you need to do is enter your height.

  • Body Mass Index

    Body Mass IndexLearn more

    This tool considers your height and weight to assess your weight status.

  • Can we help answer your questions?

    Wellmont Nurse Connection is your resource for valuable health information any time, 24 hours a day, seven days a week. Speak to a Nurse any time, day or night, at (423) 723-6877 or toll-free at 1-877-230-NURSE.